

Regional Power Master Plan

Harmonizing the Greater Mekong Sub region (GMS) Power Systems to Facilitate Regional Power Trade

Dharshana Muthumuni Bathiya Jayasekara

November 2019 Power Systems Technology Center, a Division of Manitoba Hydro International Ltd.

mhi.ca

Outline

Outline

- Project Background
- □ Study Objectives and Methodology
- GMS Study Model and Scenarios
- Selected Results
 - Summary of Cost Benefit
 - Benefits of Cross-border Power Trade/ VRE Development
 - Summary of Regional Generation & Transmission Plans
- Key Study Outcomes

Project Background

Project Background – Expected Load Growth

Greater Mekong Sub (GMS) region has an increasing power demand.

Main contributors to the regional load demand are Thailand and Viet Nam

Note: China (Yunnan and Guangxi provinces) is modeled as a node with excess power for export. 5

Project Background

□ The load and the generation resources in the region are unevenly distributed.

- Laos, Myanmar and Cambodia have high hydro power potential
- Viet Nam and Thailand have high wind and solar potential.

Study Objectives and Methodology

Study Objectives

- The main objective of this project is to perform studies to develop a regional generation and transmission master plan for the Greater Mekong Sub-Region (GMS).
 - Determine optimal regional generation planning scenarios (for the period from year 2022 to year 2035).
 - Determine the **optimal cross-border power transmission scenarios** to facilitate generation plan for year 2022 to 2030.
 - Perform PSS[®]E based load flow studies to verify the technical feasibility of the proposed plans and identify additional system upgrades (if required).
 - Determine the most 'economically' and technically feasible cross-border transmission expansion plans and corresponding regional generation development scenarios.

Study Methodology

• Load forecast, existing generation plans and cross-border power trade plans are used to develop the regional generation and transmission plan

Key inputs and expected outcomes of regional plan development

Study Methodology

- A number of regional generation development scenarios are developed to include the uncertainty associated with the data inputs to generation/transmission plan
- Uncertainty in load growth, economic, technological and policy related factors are considered in the analysis.

GMS Regional Study Model and Scenarios

OPTGEN™/SDDP™ Study model - Scenarios

• 33 (11 x 3) main study scenarios were used to account for the uncertainty in

Scenario Summary												
	Technological/Policy factor											
Economic factor	Base			Solar-battery storage		Nuclear		High cross-border power trade				
Base	Μ	Н	L	Μ	Н	L	Μ	Н	L	Μ	Н	L
VRE cost reduced	Μ	Н	L	Μ	Н	L				Μ	Н	L
High fossil fuel price	Μ	Н	L				Μ	Н	L	Μ	Н	L
Low gas price	Μ	Н	L									

- Base study scenarios are developed assuming the most likely generation and transmission development options (Based on current generation plans – optimized transmission considering cross border power trade)
- In addition, 3 reference study scenarios are developed for comparison of costs
 - Generation and transmission development inputs are same as 'Base' study scenarios
 - No transmission optimization (only the existing/planned transmission links)

OPTGEN™/SDDP™ Study model – Representation of load

• The discretized daily load curve was modeled using 7 load "blocks"

OPTGEN™/SDDP™ Study model – Availability of Renewable based generation

OPTGEN[™]/SDDP[™] Study model – Lines

- Existing Cross-border transmission lines
- Planned Cross-border transmission lines
- Only 220 kV and above

PSS[®]E Study model

- Complete 500 kV and the relevant 230/220 kV and 110/115 kV networks.
- Detailed analysis including AC load flow based reliability studies
- Base scenario and selected scenarios are studied
- Study year 2030

Selected Results

Cost Benefit Summary

Medium Demand Growth Scenarios Cost Savings (B\$)								
	Technological/Policy factor							
Economic factor	Base	Solar-battery storage	Nuclear	High cross-border power trade				
Base	18	18	18	27				
VRE cost reduced	20	20		29				
High fossil fuel price	-10		-10	0				
Low gas price	31							

Color code
>20 B\$
10-20 B\$
<10 B\$

High Demand Growth Scenarios Cost Savings (B\$)								
	Technological/Policy factor							
Economic factor	Base	Solar-battery	Nuclear	High cross-border power trade				
	Dase	storage	Nuclear					
Base	25	24	25	37				
VRE cost reduced	26	27		39				
High fossil fuel price	-8		-6	6				
Low gas price	39							

Color code
>30 B\$
10-30 B\$
<10 B\$

Low Demand Growth Scenarios Cost Savings (B\$)								
	Technological/Policy factor							
Economic factor	Base	Solar-battery	Nuclear	High cross-border				
		storage		powertrade				
Base	18	18	18	28				
VRE cost reduced	19	19		29				
High fossil fuel price	-7		-7	4				
Low gas price	28							

·20 DŞ	
)-20 B\$	
:10 B\$	

Color code

1(

Annual Progression of Energy Usage

Base study scenario - Medium load growth

Summary of regional transmission plans

Year	From	То	Connection Points	Туре	Capacity	CAPEX (2022 NPV M\$)
-	China	Vietnam	Xinqiao (Guman) - Lao Cai	220 kV	500	-
-	China	Vietnam	Maguan (Malutang) - Ha Giang		250	-
-	Myanmar	China	Shweli 1 HPP - Dehong	220 kV	500	-
-	Myanmar	China	Dapein 1 HPP - Dehong	500 kV	1500	-
-	Lao PDR	Thailand	Nam Theun 2 HPP - Roi Et 2	500 kV	3000	-
-	Lao PDR	Thailand	Houay Ho HPP - Ubon 2	230 kV	500	-
-	Lao PDR	Thailand	Theun Hinboun HPP - Thakhek - Nakhon 2	230 kV	500	-
-	Lao PDR	Thailand	Nam Ngum 2 - Na Bong - Udon 3	500 kV	3000	-
-	Lao PDR	Thailand	Hongsa TPP - Nan - Mae Moh 3	500 kV	3000	-
-	Vietnam	Cambodia	Chau Doc - Takeo - Phnom Penh	230 KV	500	-
-	Lao PDR	Vietnam	Xekaman 3 HPP - Thanh My	220 kV	500	-
-	Lao PDR	Vietnam	Xekaman 1 HPP (Hatxan) - Pleiku	220 kV	500	-
-	Lao PDR	Thailand	Xayaburi HPP - Tha Li - Kon Kaen 4	500 kV	3000	-
-	Lao PDR	Thailand	Pakse - Ubon 3	500 kV	3000	-
2022	Myanmar	Thailand	Yangon area - Mae Moh		1500	153
2022	Myanmar	Thailand	Mawlamyine - Tha Tako	500 kV	1500	136
2023	China	Thailand	Gan Lan Ba - Tha Wung via Lao PDR-N	600 kV DC	3000	1056.7
2024	Myanmar	Thailand	Mae Khot TPP - Mae Chan	230 kV	250	47.5
2024	Lao PDR	China	Luang Prabang - Yunnan	500 kV	1500	116.9
2024	Myanmar	China	Mandalay - Yunnan	500 kV	1500	116.9
2025	Lao PDR	Cambodia	Ban Soc/Ban Hatxan - Tay Ninh via Stung Treng	500 kV	1500	58.3
2025	Cambodia	Vietnam	Ban Soc/Ban Hatxan - Tay Ninh via Stung Treng	500 kV	1500	58.3
2027	Lao PDR	Vietnam	Savannakhet - Ha Tihn	500 kV	1500	49.2
2028	Lao PDR	Vietnam	Xekaman 4 HPP - Ban Soc/Ban Hatxan - Pleiku	500 kV	3000	52
2028	China	Vietnam	Yunnan - Hiep Hoa	500 kV DC	3000	480.7
2029	Lao PDR	Vietnam	Nam Mo HPP - Ban Ve	220 kV	500	54.9
2029	Lao PDR	Vietnam	Luang Prabang HPP - Xam Nau (Lao PDR-N) - Nho Quan	500 kV	3000	108.3
2030	Thailand	Cambodia	Wangnoi - Banteay Mean Chey – Siem Reap - Kampong Cham	500 kV	3000	106.8
2030	Cambodia	Vietnam	Kampong Cham - Tay Ninh	500 kV	3000	31.4

Summary of regional transmission plans

Base Scenario

Summary of regional transmission plans

Base Scenario (Medium Load Growth)

- Four interconnections are built between Laos and Viet Nam
- HVDC lines are built from China to Thailand and from China to Viet Nam
- Three interconnections are built between Thailand and Myanmar

Conclusions and Key Study Outcomes

- Regional generation planning scenarios were identified for the period from year **2022 to year 2035**.
- Cross-border power transmission plans to facilitate generation plans were obtained for year **2022 to 2030**.
- Main future directions identified in the study for further analysis
 - Base scenario Transmission optimized
 - Aggressive cross border power trade Generation and added transmission
 - Reduced VRE cost Overall impact studied
- Base scenario
 - 18 \$ Billion total cost benefit
 - High cross-border transmission development in Myanmar Thailand and Laos- Viet Nam interfaces

Key Study Outcomes

- Aggressive cross-border power trade scenario
 - 27 \$ Billion total cost benefit
- Reduced VRE cost scenario
 - 20 \$ Billion total cost benefit
- Regional transmission plan
 - Most of the candidate interconnections are optimized before 2030
 - These interconnections are largely beneficial to lower the total cost (CAPEX+OPEX) the GMS region

Key Study Outcomes

Optimized generation developments

- Large hydro in Myanmar and Lao PDR
- Large thermal and VRE in Thailand, Viet Nam

Key Study Outcomes

Optimized cross-border developments

- Highly impacting interconnections
 - Myanmar Thailand interconnections (developed early in the study period)
 - Lao PDR Viet Nam interconnections
 - Thailand Cambodia Viet Nam interconnections
- Other optimized interconnections
 - Lao PDR Cambodia
 - China to Myanmar, Thailand, Laos & Viet Nam (Generally near the end of the period)

Finalizing the study

- Update the study results based on feedback
- Finalize detailed analysis
- Final report

Thank you

